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Abstract

High-resolution digital particle image velocimetry has been used to measure fluid energy transport terms
necessary for developing a scientifically rigorous Hamilton’s Principle approach to modelling
fluid–structure interactions. The interaction being modelled is the vortex-induced vibration of a low
mass-damping circular cylinder mounted like an inverted pendulum in a water tunnel. Data in this paper
are specifically focussed on the case where the cylinder undergoes large amplitude modulated oscillations
slightly below the cylinder’s natural frequency. This paper describes the experimental methodology used to
acquire key modelling data, i.e. kinetic energy transport and work by viscous forces across the boundaries
of an integral control volume. Integration of these data into the coupled energy equation is also described.
The ability of this modelling approach to accurately capture complex phenomena such as beating is
demonstrated.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In an earlier work, Benaroya and Wei [1] presented a detailed formulation of a Hamilton’s
Principle approach to modelling fluid–structure interactions. The overall goal of the effort was to
develop a scientifically based methodology for reduced-order modelling of the fully coupled
response of a structure to complex fluid loading. In this paper, experimental contributions
necessary for developing and validating such models are addressed. We begin with a review of the
model equation and a discussion of the requirements for developing a robust, dynamically
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accurate model. This is followed by a description of experimental methodologies along with a
presentation of energy transport measurements. Integration of experimental data into the
reduced-order analytical model completes this paper.

1.1. A brief overview of analytical fluid–structure modelling

There is an extensive body of literature on analytical modelling of vortex-induced vibrations.
This may be roughly divided into two categories: single-degree-of-freedom and coupled wake-
oscillator models. Single-degree-of-freedom models use a single ordinary differential equation to
describe the behavior of the structure oscillation. Wake dynamics are incorporated into the
equation through the use of some appropriately defined forcing function. Coupled wake-oscillator
models use two ordinary differential equations to simulate the fluid–structure system. One
represents the structure while the other treats the periodic wake of the structure as an oscillator. It
is important to note at the outset that, in order to fully understand the coupled interaction
problem, the structure and fluid should not be separated. Flow characteristics depend on the
structure’s motion and vice versa. This will be addressed throughout this paper.
The principal advantage of single-degree-of-freedom models for vortex-induced-vibrations is

simplicity. Structural response may be determined by solving a single equation of motion. For
example, the equation of motion for a pendulum-like, linearly damped, and periodically forced
cylinder can be expressed as

m .x þ c ’x þ kx ¼ F ; ð1Þ

where m; c; k; x and F are the cylinder’s mass, linear material damping constant, spring constant,
transverse displacement and aero/hydro-elastic forcing function, respectively. First and second
time derivatives of x are denoted as ’x and .x; respectively. Additionally note that c ¼ 2mzon and
that k ¼ mo2

n; where on is the cylinder’s natural frequency and z is the fraction of critical
damping, or the damping factor. F generally takes the form of F ðx; ’x; .x;os; tÞ with os representing
the Strouhal frequency.
Single-degree-of-freedom models may be further subdivided into ‘negative-damping’ or ‘forced-

coefficient data’ models. Negative damping models are generally applicable to freely vibrating
structures. They are based on the assumption that aero/hydro-elastic damping effects may become
strong enough to offset mechanical damping. When this is true, aero/hydro-elastic damping
effectively introduces a negative-damping type instability. Examples of works using this modelling
approach include Basu and Vickery [2] and Simiu and Scanlan [3].
An alternative approach within single degree-of-freedom modelling is to incorporate

experimentally determined force coefficient data. The advantage of this is that fluid–structure
couplings are introduced into the model, albeit simplistically and indirectly, through the use of
experimental constants. For example, Sarpkaya [4] used force measurements from an externally
excited cylinder to develop the expression, F ¼ rrO

2ðCml sinOt� aCdl cosOtÞ; where Cml and Cdl

were defined to be the inertia and drag coefficients, respectively.
Regardless of how it is done, accurately describing non-linear fluid–structure coupling within

the framework of a single degree-of-freedom model is highly problematic. For this reason,
coupled wake-oscillator models were introduced. Building on the work of Bishop and Hassan [5],
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Hartlen and Curie [6] developed probably the most widely used coupled wake-oscillator model to
date. In their model, a van der Pol-type soft non-linear equation for the lift force was coupled to
the body motion by a linear dependence on cylinder velocity. The model equations were

.x þ 2x ’x þ x ¼ aOCL ð2aÞ

and

.CL � aO ’CL þ ðg=OÞ ’C3
L þ O2CL ¼ B ’x: ð2bÞ

In these equations, CL was defined as the lift coefficient. O was the ratio of vortex shedding
frequency, fs; to the structure’s natural frequency, fn: x was the damping coefficient and a; g and B

were model constants.
Hartlen and Curie [6] assumed that the structure’s displacement, x; and lift force coefficient, CL;

varied sinusoidally in time with a common frequency, fc; i.e. the frequency of structural
vibrations:

x ¼ X sin 2pfct; ð3aÞ

CL ¼ CL sinð2pfct þ fÞ: ð3bÞ

Substituting these expressions into the model equations (2a) and (2b), Hartlen and Currie [6]
obtained relations between fs; fc; the phase, f; and maximum amplitude, X : Variants of the
coupled wake-body model developed around the same time include Landl [7] and Iwan and
Blevins [8].
Closer examination of the Hartlen and Curie model, particularly equation (3), clearly indicates

the need for simplifying assumptions in order to implement the model. Depending on the
assumptions, significant physical phenomena, including key couplings, may be overlooked.
Indeed, as will be shown in this paper, the assumption of a single characteristic frequency, fc; will
not permit description of beating behavior. It is also not a simple matter to define X or CL in a
manner that reflects the coupled influence of fluid loading on structural response and vice versa.
For these reasons, Benaroya and Wei [1] extended the modelling paradigm, introduced by
McIver [9], to examine external flows around elastic structures.

1.2. The reduced-order energy-based equation of motion

One of the unique features introduced in Ref. [1] was the use of an integral control volume
containing both the structure as well as a region of fluid surrounding the structure. The
control volume may either be defined to move with the structure or to be stationary. In the
latter formulation, the control volume must be large enough to accommodate the full range
of motion of the structure without the structure crossing the control volume boundaries.
For a control volume moving with the structure, the amount of fluid contained in the control
volume can be made arbitrarily large or small as a function of mathematical or experimental
expedience.
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Regardless of the type of control volume chosen, the equation of motion derived in Ref. [1] may
be written in the simplified form

d=dt Tstructure
1a

þTfluid
1b

þPstructure
1c

( )
CV

¼
Z

CS

½rU2=2�ðU� VCV
2

Þ . n ds þ
Z

CS

ð�pnþ s
3

Þ . U ds: ð4Þ

Here, T denotes kinetic energy, P represents potential energy, 1
2
rU2 is the kinetic energy of the

fluid motions, U and VCV are the instantaneous local fluid and control surface boundary velocity
vectors, respectively, and finally, p and s are pressure and the viscous stress tensor, respectively.
The unit outward normal vector is denoted as n, and the subscripts CV and CS indicate volume or
boundary surface integration. In Ref. [1], the control volume was divided into a closed region
containing the structure, and an open region containing the fluid immediately surrounding the
structure. For simplicity, these two regions are combined here so that the integrals on the right-
hand side of Eq. (4) may be considered to contain both closed and open regions.
Eq. (4) is an integral formulation of the mechanical energy transport equation for a control

volume containing both the structure and a region of fluid immediately surrounding the structure.
The left-hand side includes time derivatives of kinetic and potential energies of the structure, 1a
and 1c, and temporal variations of the fluid kinetic energy, 1b. These comprise the time rate of
change of mechanical energy in the control volume at any instant of time. Terms on the right-
hand side of Eq. (4) include the net flux of fluid kinetic energy across the boundaries of the control
volume, term 2, and work done on the control volume boundaries by pressure and viscous forces,
term 3, i.e. the non-conservative surface forces. These are effectively the fluid ‘forcing’ functions
for the structure terms on the left-hand side of Eq. (4).

1.3. Using experimental data as model input

A fundamental challenge facing any fluid–structure interaction modeller is accurately
describing the fluid forcing. For the one equation model, Eq. (1), an expression for F is required.
Eq. (2) requires an expression for CL while Eq. (4) requires time-dependent expressions for fluid
kinetic energy flux and rate of work. Depending on approach, there are frequently tradeoffs
required in formulating a fluid–structure interaction model. In analytical modelling, there is often
a mathematical tradeoff required between mathematical accuracy and tractability. Further, if
experiments are to be used, the type of data that can be obtained, particularly for a complex
geometry, often limits the modeller. For example, wake-oscillator models use lift coefficient data
with assumed sinusoidal variations in time.
Advances in fluid measurement techniques over the past decade have created opportunities to

significantly advance the modelling process. In a series of studies including, Shah et al. [10], Hsu
et al. [11] and most recently, Grega et al. [12] we have been able to employ high-resolution digital
particle image velocimetry (DPIV) to examine complex derivative quantities in turbulent flow.
These include examination of vorticity transport and strain across a turbulent trailing vortex from
a half delta wing; Shah et al. [10]. Terms in the differential turbulent kinetic energy and vorticity
transport equations were presented for a turbulent boundary layer in water interacting with a free
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surface in Hsu et al. [11] and Grega et al. [12]. In light of these advances, there is no longer a need
to limit experimental input to the models to the most fundamental of measurable quantities such
as CL: Neither is it necessary to superimpose such a high degree of simplification to the
experimental data such as constant amplitude sinusoidal variations in the forcing functions. Our
approach in this investigation has been to develop a reduced-order analytical fluid–structure
interaction model incorporating temporally and spatially resolved DPIV measurements of the
fluid ‘forcing’; terms 2 and 3 in Eq. (4). By accurately measuring the fluid forcing terms, we
effectively use experiments to ‘derive’ a set of ‘analytical’ expressions for the fluid forcing. There
would be no assumptions inherently built into the model. It is important to note at the outset,
however, that DPIV is ‘only’ a two-dimensional, velocity field measurement technique; for a
detailed uncertainty analysis for the present measurement system, please see Grega et al. [12].
Discussions of current limitations and possible solutions are included at appropriate points.

2. The oscillating cylinder

The model problem addressed in this study was the vortex-induced vibration of a low mass-
damping-ratio circular cylinder mounted as an inverted pendulum. The cylinder was restrained at its
bottom end by a stainless-steel pin but restricted to move in the cross-stream plane only. A schematic
drawing of this model problem is shown in Fig. 1. One can think of the dynamics as an inverted
pendulum excited by its own periodic vortex shedding. For the purposes of this analysis, the
amplitude of motion of the free, upper end was sufficiently small that the flow could be considered to
be nominally two dimensional. Indeed the model results will verify this assertion. Three-
dimensionality effects have been examined by Voorhees [13] and will be presented in a separate paper.
The structure used in this study was a 2:54 cm diameter ðDÞ cylinder constructed of thin,

0:16 cm; wall acrylic tube. It was 128 cm long and immersed in a uniform flow of water, B107 cm
deep. Acrylic was used to facilitate optical access completely around the structure by permitting
the DPIV laser illumination sheet to pass through the structure, i.e. there was very little shadow
cast by the cylinder opposite the light source. In Ref. [1], an aluminum cylinder was used which
did not permit measurement throughout a shadow region upstream of the cylinder.
To further minimize refraction effects as laser light passed through the cylinder, a

2:54 cm long� 2:22 cm diameter plug was installed close to the cylinder mid-height and a small
amount of water, B2:54 cm deep, was placed in the cylinder above the plug. The plug was fitted
with o-rings so that it could be positioned wherever needed along the cylinder’s length. In this
case, the plug was positioned B70 cm from the bottom of the cylinder. The total mass of the plug
and water was negligible in relation to the total structural mass, but it effectively allowed
transmission of the DPIV laser illumination sheet through the cylinder with minimal distortion.
As noted earlier, the cylinder was mounted to the floor of the Rutgers Free Surface Water

Tunnel facility using a 0:32 cm diameter stainless-steel pin; both ends of the pin were threaded.
The top end of the pin was secured to the bottom of the cylinder using a second plug, 2:22 cm in
diameter and 3:81 cm in length. The bottom end of the pin was screwed to a 1:27 cm thick base
plate. The effective length of the pin after installation was 5:08 cm: In order to minimize end
effects, the second plug was inserted up inside the cylinder with its bottom face B2:54 cm above
the bottom of the cylinder. AB2:54 cm clearance between the bottom of the cylinder and the base
plate was left in order to prevent contact as the cylinder oscillated.

ARTICLE IN PRESS

P. Dong et al. / Journal of Sound and Vibration 276 (2004) 45–63 49



To ensure motion was restricted to the cross-stream plane a cart/track assembly was placed on
the free end of the cylinder protruding through the free surface. This is shown in Fig. 2. The cart
was simply a block of PVC with a 2:54 cm diameter hole in its center, fitted with two pairs of ball
bearings on opposing faces. This cart was constrained to move between two polished steel plates
which were rigidly mounted above the free surface and oriented in cross-stream planes. The
friction resistance of this cart assembly was minimal.
In this study, the cylinder as modelled as a simple harmonic oscillator with frictional damping.

The model equation was

1

2

d

dt
½I0 ’yþ kTy

2 � ðmg � BÞL cos y�

¼
Z

CS

½rU2=2�ðU� VCV Þ . n ds þ
Z

CS

ð�pnþ sÞ . U ds: ð5Þ

ARTICLE IN PRESS

Fig. 1. Schematic drawing of one of the oscillating cylinder experiment, hollow aluminum tubes with leaf spring

attachment. Observe that the bottom end was fixed to the water tunnel floor by the leaf spring while the top end was

free to move. The principal differences between the aluminum and acrylic cylinders were the transparency of the acrylic

and the use of a stainless-steel pin at the acrylic cylinder base instead of a leaf spring.
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One should recognize this as a specific form of Eq. (4) where I0 is the moment of inertia for the
total structure (including cart, plugs, etc.), kT ¼ I0ð2pfnÞ

2 is the structure’s stiffness, m is the total
structural mass, g the gravitational constant, B the net buoyancy of the structure and L the total
length. The cylinder’s angular deflection is denoted by y: Note that kT may also be interpreted as
an effective linear torsional spring constant of the stainless-steel pin. The right-hand side of
Eq. (5) contains the identical fluid kinetic energy flux and rate of work terms identified for Eq. (4).
The mass-ratio, m�; of the cylinder was 0.65, where m� is defined as the ratio of the structure’s

total mass to the mass of water displaced by the structure. The cylinder’s damping ratio, z; was
0.058. Its natural frequency, fn; was 0:83 Hz in air and 0:77 Hz in water. The total moment of
inertia for the entire cylinder assembly, I0; was 0:40 kg m2: The stiffness of the structure, kT ; was
11:0 N m=rad: Note that the maximum angular deflection, ymax; was 1:5	: This is consistent with
the assertion that three-dimensional effects may be neglected. As noted earlier, Voorhees [13]
demonstrated that for this experiment, K!arm!an vortices remained continuous along the entire
length of the cylinder and that three-dimensional effects were dominant primarily at the free
surface.
The frequency and amplitude response characteristics of the cylinder are shown in Figs. 3 and 4,

respectively. Measurements were made at the cylinder mid-height, B70 cm above the floor of the
water tunnel. Two plotter symbols, squares and diamonds, appear in both figures. The diamonds
denote data taken while incrementing upward through the velocity range. Squares denote
frequency and amplitude measurements made while decrementing downward through the speed
range. Examining the cylinder response both while progressing through the speed range in both
directions provided insight into any hysteresis that may be present in the system. It is also
worth noting that when vortex-induced-vibrations occurred, both the cylinder oscillation and
K!arm!an vortex shedding frequencies were identical when averaged over long sampling periods,
i.e. 5–10 min:
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Fig. 2. Detailed schematic showing the cart and track assembly used to restrict cylinder motion to the cross-stream

plane.
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A salient feature of the cylinder response characteristics is the existence of two distinct types of
fluid–structure interaction. At the low speed end, 3:6pU=fnDp6:4; the interaction was
characterized by strong energetic vortices shed very close to the cylinder and by a beating
behavior of the cylinder oscillations. This was referred to as ‘resonant synchronization’ in
Atsavapranee et al. [14] and as the ‘upper branch’ in Khalak and Williamson [15]. The maximum
amplitude in the resonant synchronization regime occurred at U=fnDE5:5:
At higher speeds, 6:4pU=fnDp9:0; classic lock-in behavior could be observed. In this regime,

cylinder oscillation frequency and amplitude remained constant over a wide range of flow speeds.
Khalak and Williamson [15] refer to this as the ‘lower branch’ of the cylinder amplitude response
curve. Flow visualization studies presented in Atsavapranee et al. [14] and Voorhees [13] indicated
that in the classic lock-in regime, vortex shedding appeared rather disorganized in comparison to
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Fig. 3. Dimensionless cylinder oscillation frequency, f0=fn; vs. reduced velocity, Ufn=D: Squares denote measurements

taken for incrementally increasing speeds while diamonds indicate data taken while decreasing through the speed range.
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Fig. 4. Maximum amplitude response characteristics of the acrylic cylinder undergoing vortex-induced-vibrations. See

caption Fig. 3 for definition of plot symbols.
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the resonant synchronization regime. We interpreted this as the cylinder modulating the flow so
that ‘just enough’ energy was transferred from fluid to structure to maintain a fixed amplitude
oscillation at the natural frequency.

3. Experimental apparatus and methods

We now turn to the experimental methodology issues necessary to bring about a reduced-order
analytical solution for this problem. Much of this was outlined in Ref. [1]. Detailed discussions of
the flow facility, in-house DPIV system and measurement uncertainties may be found in
Refs. [10,12]. Brief descriptions are included here.
Experiments were conducted in the Rutgers Free Surface Water Tunnel. The test section

measured 58:4 cm in width� 122 cm in depth� 610 cm in length. It was constructed entirely
from 1:91 cm thick glass panels for maximum optical access. With the test section completely
filled, the maximum flow rate corresponded to a mean free stream velocity of approximately
30 cm=s: Free stream turbulence levels were less than 0.1% of the mean free stream velocity and
the flow was uniform across the cross section to within 72%:
High-resolution DPIV measurements were made using a Kodak Megaplus ES1.0 video camera.

The flow was seeded with 13 mm diameter silver coated glass spheres and illuminated using a New
Wave Research Gemini PIV double-pulsed Nd:YAG laser. DPIV vector fields were computed
from successive video images using a two-step spatial cross-correlation algorithm developed
in-house. A sample instantaneous vector field is shown in Fig. 5 along with three of the integral
control volumes examined. Again, an uncertainty analysis for velocity and velocity derivatives
have been presented in Ref. [12]. As will be seen in the following section, the resolution and
accuracy of the measurements enabled accurate assessment of terms 2 and 3 in the energy Eq. (4).
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Fig. 5. Instantaneous DPIV vector field showing flow around the acrylic cylinder. Flow is left-to-right. Three of seven

control volumes are shown including the smallest (a) and largest (c). Modelling was done using volume (b).

P. Dong et al. / Journal of Sound and Vibration 276 (2004) 45–63 53



Records of instantaneous cylinder position were measured using a Banner Omni-beam OASBD
analog photoelectric sensor. The sensor operated on the principle of measuring the reflected
intensity of an 880 nm infrared source beam. A small white reflecting surface was attached to the
top of the cylinder to improve signal quality. Output from the position sensor was transferred to a
PC through a 12-bit analog to digital A/D board. Cylinder position data were captured at 100 Hz;
10 times faster than the DPIV sampling rate. This ensured clean accurate position information
each time flow data were acquired.

4. DPIV measurements

In this section, we examine the process of incorporating time resolved DPIV data into a reduced
order analytical model. The Re ¼ 2300 case, in the resonant synchronization regime, was chosen
because of the high degree of synchronization between vortex shedding and cylinder motion. This
corresponds to the diamond shaped data point at U=fnDE4:4 and a=DE0:4 in Fig. 4.
The data set consisted of an ensemble of 50 sets of 225 consecutive DPIV velocity field

measurements taken at 100 ms intervals, or B 1
12

of a cylinder oscillation period, in a horizontal
plane perpendicular to the axis of symmetry of the cylinder at rest. The location of the
measurement plane was B70 cm above the floor of the test section coinciding with the amplitude
measurements. The spacing between vectors was 0:19 cm corresponding to l=D ¼ 0:074: The total
duration of the sample was 22:5 s; or approximately 17 cylinder oscillation periods.
The first step in providing experimental support for the modelling effort was to compute

integral quantities in Eq. (4), i.e. terms 1b, 2, and 3, from each of the 225 instantaneous vector
fields. Structural energy terms, 1a and 1c, were obtained from the optical position sensor output.
DPIV vector fields could be temporally matched to the cylinder position vs. time trace because the
cylinder position could also be determined directly from the video images. Examples of energy
transport contour plots at different times in a cylinder oscillation cycle were shown in Benaroya
and Wei [1].
Seven different sized control volumes were tested in this study as described in Ref. [16]. Three of

the control volumes are shown in Fig. 5. All seven share a common upstream face and common
transverse faces (top and bottom faces in Fig. 5). The only difference was the x-locations of the
downstream faces. The smallest and largest volumes tested are labeled in Fig. 5 as ‘a’ and ‘c’,
respectively. The intermediate sized control volume labeled ‘b’ is the one for which model results
are presented later in this paper. There were two additional control volumes between ‘a’ and ‘b’
and an additional two whose downstream faces were equally spaced between ‘b’ and ‘c’. The
dependence on control volume size and location is discussed later in this section.
Except for the pressure work term, appearing as part of term 3 in Eq. (4), terms in the integral

mechanical energy transport equation could be calculated relatively easily from the DPIV data
and from the cylinder position sensor signal. Spatial derivatives needed for the rate of viscous
work term were computed using central differences. The time derivative of fluid kinetic energy,
dTfluid=dt; was computed by differentiating successive DPIV vector fields. The flux of fluid kinetic
energy past a point could be computed directly using the measured velocity components at that
point.
Computing pressure work could be done in two independent ways. Following the approach

described in Ref. [17], it was in principle possible to compute instantaneous local pressure
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gradients from the two-dimensional Navier–Stokes equations using a quasi-two-dimensional
assumption. Pressure work could then computed directly from the DPIV measurements. The
difficulty with this approach turned out to lie in prescribing a verifiable pressure boundary
condition somewhere in the measurement field-of-view.
An alternative approach was to compute the residual of all of the other terms in Eq. (4). This

method has the advantage of not needing a pressure boundary condition, but potentially suffers
from error propagation if measurement uncertainties are high. Both approaches were examined
for this investigation. A comparison of the two techniques is presented in Ref. [16]. In brief, we
were able to compute traces of pressure work to within a dc constant. The offset was attributable
to not being able to define a pressure boundary condition. For this reason, we chose to use the
results of the second approach, computing the residual of all other terms in Eq. (4).
Computing integrals for a desired control volume, then, simply required summing values along

a predetermined control volume boundary. The control volume used for this exercise is volume ‘b’
shown in Fig. 5. The upstream and downstream faces were B3

4
diameters upstream and two

diameters downstream of the cylinder axis, respectively. By using a clear acrylic cylinder, it was
possible to measure flow velocities around the structure, thereby placing the structure entirely
within the control volume.
To remove the effects of small-scale fluctuations, e.g. shedding of Bloor vortices (for details, see

Bloor [18] or Wei and Smith [19]), phase averaging was performed. Fifty sets of 225 vector fields
were included in the ensemble. The cylinder position vs. time signal was used to line up individual
data sets. Phase averaging was done by centering on the peak of a beat cycle. For further details,
see Dong [16].
In principle, results from the reduced-order analytical model should be independent of control

volume size and location as long as the structure remains within the control volume boundaries at
all times. However, certain control volumes provide energy transport traces that are more readily
interpreted. This can be seen by comparing phase averaged energy traces for different control
volumes.
Figs. 6–8 include phase-averaged time histories of fluid energy transport terms obtained from

the DPIV data for the three control volumes shown in Fig. 5. Fig. 6 shows traces from the smallest
control volume, ‘a’, while Figs. 7 and 8 include energy traces from the intermediate and largest
control volumes, ‘b’ and ‘c’, respectively. There are five traces in each figure representing terms in
Eq. (4); the time rates of change of kinetic and potential energies of the cylinder, 1a and 1c have
been combined into single traces in each figure appearing as dotted lines. The time rate of change
of fluid kinetic energy in the control volume, term 1b, appear as solid black lines. The flux of fluid
kinetic energy across the boundaries of the control volume is shown as solid gray lines. The
horizontal dashed lines, appearing along the abscissae, are actually the rate of work done by
viscous forces on the control volume boundaries. It makes sense that this term is negligibly
small, as vortex shedding from cylinders is known to be a pressure driven flow. Finally, the
dashed gray lines are the rate of work done by pressure forces on the boundaries of the
control volume. All data in Figs. 6–8 have been non-dimensionalized by 1

2
rU3

N
L; where ‘L’ is

the length of the upstream (or downstream) face of the control volume. This non-
dimensionalization may be physically interpreted as the total kinetic energy flux of the free-
stream flow into a control volume with upstream dimension, L: For these experiments, L was
B10 cm and UN was B9:5 cm=s:
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Comparison of corresponding traces between Figs. 6–8 demonstrates the advantage of control
volume ‘b’ over the other two. It should be intuitively obvious that the lateral faces of the control
volume should have little impact on the energy transport signals (assuming, of course, that they
are located far enough away from the mean cylinder mid-line to effectively be in the free stream).
Because of the proximity of the upstream face to the cylinder, the flow into that face was not
steady and uniform; integration along this face did contribute to the overall unsteadiness in the
different energy transport terms. However, the dominant contributions to the surface integrals
resulted from unsteady fluctuations in the cylinder wake. As such, it was the location of the
downstream face that determined the magnitudes and form of the energy traces.
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Fig. 6. Phase-averaged terms in the integral energy transport equation for the smallest control volume, ‘a’, in Fig. 4:

——, time rate of change of fluid kinetic energy in the control volume ð@KE=@tÞ;——, flux of fluid kinetic energy across

the control volume boundaries; — —, rate of work done by viscous forces; yy; time rate of change of mechanical

energy of the cylinder ð@½KE þ PE�=@tÞ; – – – , rate of work done by pressure forces calculated from the energy balance.
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Fig. 7. Phase-averaged terms in the integral energy transport equation for the intermediate control volume, ‘b’, in

Fig. 4. See Fig. 6 for plot legend.
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Data from the smallest control volume appears in Fig. 6. One can clearly see that the fluid
energy traces are quite irregular, particularly for the fluid kinetic energy flux. This is because the
downstream face of the control volume lies inside the stagnation, or vortex formation region of
the wake. This region is relatively insensitive to the strongly periodic velocity fluctuations
associated with the K!arm!an vortices.
Strongly periodic signals were generated for control volume ‘b’, as shown in Fig. 7. The

downstream face of this control volume was located immediately downstream of where the
K!arm!an vortices rolled up and were shed from the cylinder. One would therefore expect that the
fluid energy transport terms, particularly the fluid kinetic energy flux term, to be much more
sinusoidal in form.
As K!arm!an vortices advect downstream away from the cylinder, viscous and turbulent

diffusion becomes more prominent. In addition, complex vortex interactions, both on the small
and large scales begin to deform the vortices. For descriptions of the various vortex interactions
that may occur, the reader is referred to Wei and Smith [19], Williamson [20] and Voorhees [13].
As these phenomena develop, the energy transport signals become less sinusoidal. This can be
seen in Fig. 8 for control volume ‘c’. The downstream face of this control volume is located B3
diameters downstream of the cylinder axes. Observe that while the phase-averaged traces are still
quite periodic, they are not as clean as their counterparts in Fig. 7.
It is interesting to note, in comparing Figs. 6–8, that the ‘dc’ levels of both the fluid kinetic

energy flux and pressure work terms change significantly as the downstream face of the control
volume is varied. Indeed, observe that the kinetic energy flux term is positive in Fig. 6 for the
smallest control volume and negative for the largest control volume, shown in Fig. 8. In Fig. 7, the
flux term is predominantly negative, but with positive maxima.
Insight into why this happens can be seen in the sequence of contour plots shown in Fig. 9.

Each of the eight double contour plots show instantaneous streamwise velocity, appearing as
solid black lines superimposed on color contours of instantaneous fluid kinetic energy. Flow is
left-to-right and the time between successive plots is 200 ms; i.e. every other vector field. The total
duration of the sequence is 1:40 s; spanning slightly more than one cylinder oscillation period.
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Fig. 9. Sequence of eight instantaneous measurements spanning one cylinder oscillation from data shown in Figs. 6–8.

The time between successive plots is 200 ms: The flow is from left-to-right. Color contours denote instantaneous local

fluid kinetic energy while line contours show magnitude of streamwise velocity. Quantities are dimensional (cm/s and

cm2=s2).
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In looking at Fig. 9, one must recall that both the fluid kinetic energy flux and rate of work
done by pressure forces include the product of energy (i.e. fluid kinetic energy, 1

2
rU2; or potential

energy, -p) with velocity normal to the local control surface. That is, the instantaneous flux of fluid
kinetic energy in the stream direction at any point in the flow is the product of the kinetic energy
and streamwise velocity at that point. In addition, we have previously addressed the importance
of contributions from the downstream face of the control volume to the energy transport signals.
With these two points in mind, it is instructive to look at the streamwise velocity contours with
increasing distance from the cylinder trailing edge.
In particular, observe that Uo0 immediately behind the cylinder, i.e. for 1:8px=DpB2:6; for

every contour plot in Fig. 9. Farther downstream, however, U > 0 for x=D > 2:6: We attribute the
variable ‘dc’ shift in fluid kinetic energy flux and pressure work as a reflection of the fact that flow
immediately behind the cylinder actually moves upstream. When the downstream face of the
control volume is sufficiently far downstream, kinetic energy flux and pressure work are
uni-directional across the entire face.

5. Applying experiments to the reduced order analytical model

In the preceding section, we presented detailed flow measurements from an inverted oscillating
pendulum experiment. The culmination of the analysis was a set of time traces of integral energy
transport terms for a control volume surrounding the structure and some volume of fluid around
the structure. In this section, we show how these data were applied to Eq. (4) and compare the
reduced-order model of cylinder motion with the actual, experimentally measured oscillations.
The precise form of the equation of motion used in this analysis appears as Eq. (5). The

structure was modelled as a damped rigid simple harmonic oscillator fixed at the base by a
torsional spring. Properties of the structure were chosen to match that of the physical experiment.
For details, the reader is referred to Ref. [16] or Ref. [21].
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Fig. 9 (continued).
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Eq. (5) was simulated using MATLAB in which the fluid forcing terms, terms 1b, 2 and 3, were
the experimentally determined functions shown in Fig. 7. Since the data were obtained at discrete
1
15
s intervals, a fast Fourier transform was performed on the data within MATLAB. Transforms

of the four fluid energy transport terms for the intermediate control volume are shown in Fig. 10.
These transforms may be interpreted as ‘experimentally derived analytical expressions’ for the
fluid forcing. The unique feature of this approach is that we have directly measured terms in the
governing equation requiring modelling. Except for quasi-two dimensionality, no empirical
assumptions were incorporated into the model.
Inclusion of the transform data shown in Fig. 10 into Eq. (5) permitted solution for the time

dependent cylinder position. A comparison between the actual cylinder motion and the motion
predicted by our reduced-order model is shown in Fig. 11. An experimental, phase-averaged
cylinder position vs. time trace is shown as a solid black line superimposed on the reduced-order
model result, appearing as a dotted trace. The ordinate and abscissa are shown in dimensional
form. Clearly, the agreement between model and experiment is quite good. Observe that both
oscillation frequency and amplitude appear to be accurately predicted by the model along with the
beating behavior. Numerical instabilities resulting from singularities when the cylinder was at
points of maximum deflection are responsible for the clipping of the model result.
Careful examination of the spectra in Fig. 10 indicate a slight frequency mismatch between fluid

kinetic energy flux and pressure work terms on one hand, and the time rate of change of the fluid
kinetic energy term on the other. One can see from the individual spectra that the flux and work
terms oscillate at a slightly lower frequency than the time derivative term. One can use physical
arguments coupled with detailed study of the signals in Fig. 10 to conclude that fluid kinetic
energy flux and pressure work correlate with the vortex shedding while changes in fluid kinetic
energy around the cylinder follow the cylinder oscillation. Thus, we conclude that the beating
phenomena observed in the resonant synchronization regime results from the competition
between vortex shedding and structural vibration.
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To test this hypothesis, we used as input to the reduced-order model, simplified, single
frequency functions for each of the fluid energy transport terms. We selected the dominant
spectral amplitude and frequency for each of the fluid terms in Fig. 10, and used those as inputs to
the model. The result of this analysis appears in Fig. 12.
Fig. 12 is again an overlay of phase-averaged measurement of cylinder position vs. time (solid

line) and the reduced-order model result (dotted line). Two beating cycles are shown in the figure
with the phase-averaged measurement plotted twice. While there are discrepancies between
measurement and prediction, the salient feature of Fig. 12 is that the key features of the
fluid–structure interaction have been captured in this simple model. The ‘major’ discrepancies
are that the model amplitude response is somewhat smaller than the physical experiment and that
the predicted oscillation frequency is slightly lower. However, errors of these types and magnitude
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are not surprising owing to the fact that energy and frequency information have been discarded
when employing the highly simplified energy spectra. We reiterate that the key physical response
characteristics, i.e. beating, amplitude and frequency, can be quite accurately reconstructed using
simplified input signals.

6. Conclusions

In summary, this paper is a report on initial successes in the development of a new paradigm for
supporting reduced-order analytical modelling of fully coupled fluid–structure interactions. The
long-term goal of this research is to develop a robust methodology in which highly resolved
experiments provide both a priori input and a posteriori validation for key terms in the governing
equations of motion. In this study, we have directly measured fluid kinetic energy transport terms
to provide accurate analytic functions necessary for solving the equations of motion. By virtue of
the single equation of motion, i.e. a mechanical energy equation, this particular model is useful for
single degree-of-freedom problems. However, in the broader context of reduced-order modelling,
the present work demonstrates the feasibility of implementing the integrated experimental/
analytical modelling paradigm.
In addition to addressing modelling issues, the experimental results presented in this paper

indicate that the beating behavior observed in the resonant synchronization regime results from a
slight frequency mis-match between the vortex shedding frequency and cylinder oscillation
frequency. Details of this finding, along with an examination of flow three-dimensionality will be
developed in subsequent paper(s).
As we move forward in this research, it is obviously desirable to generalize the methodology to

include fully coupled interactions with multiple degrees-of-freedom. In order to further extend
McIver’s principle [9] it will be necessary to include a variational approach. While this is a
standard and classical tool for modelling structural dynamics, it becomes problematic when fluid
continually flows across the control volume boundaries. Where one can define ‘virtual
displacements’ subject to certain prescribed boundary constraints for a solid structure, this does
not directly translate for a control volume which does not, by definition, contain the same
material elements for all time. Resolving this issue will permit use of the DPIV measurements over
a broader range of problems and with far greater impact.
In anticipation of generalizing this methodology, we have begun to experimentally examine two

degree-of-freedom problems. In particular, we are studying the same cylinder without the
cross-stream motion constraint. That is, the cylinder again moves like an inverted pendulum, but
is free to vibrate in both the cross-stream and streamwise directions. Preliminary flow
visualization studies have been reported in Ref. [22].
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